
AD-A256 787
S ELECTE

OCT1 6 1992 1

The Process Group Approach C
to Reliable Distributed Computing

Kenneth P. Birman*

TR 91-1216
July 1991

(Revised September 1992)

DzoZS- SATOE N'T A
Prtr,".ed t0: puziac roi,.e. Department of Computer Science

D•-._n•n=1jo•a u=.Ld Cornell University
Ithaca, NY 14853-7501

*The author is in the Department of Computer Science, Cornell University, and was
supported under DARPA/NASA grant NAG 2-593 and by grants from IBM, HP,
Siemens, GTE and Hitachi.

219z

L



REPOT DCUMNTATON AGEForm Approved
REPORT~~~ DOUETTONPGO MB No. 0704-0 188

-1 oc.1nq burden lot Ithi collodion of intonnaIon is ostimatled to average J hour pot response, including the tiff* lot ftyIvievin lhatuciono,d S"arching exmin alar W source. ga~theng and
asningthe aa hedaded and wonplolng And 1 i. h cloio fIn ilCn en orvrotsrgrdn hs udn sEnaeo m lher&po fthsahato o no .ain

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE j3. REPORT TYPE AND DATES COVERED

ISeptember 1992 Special Technical

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

The Process Group Approach to Reliable Distributed

Computing (Revision) NAG 2-593

6. AUTHOR(S)

Kenneth P. Birman

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION

Kenneth P. Birman, Associate Professor REPORTNUMBER

Department of Computer Science
Cornell University 91-1216 (Revised)

9 qPOHGORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
DARPA/ISTO AGENCY REPORT NUMBER

1i. SUPPLEMENTARY NOTES

l2a. DISTRIBUTIONIAVAILABILITY STATEMENT 12b. DISTRIBUTION4 CODE

13 AB3STRACT (Afaximum 200 words)

Please see page 1 of report.

14. SUBJECT TERMS 15. NUMBER OF PAGES

39
16. PRICE CODE

17. SECURITY CLASSIFICATION4 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF ThIS PAGE OF ABSTRACT ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED
NSI4 ?540.01-20SSW50 Starnard Form, M (flw. 2 "0

Prgo" by ANSI still. Z3* 10
298-102



The Process Group Approach to Reliable Distributed Computing *%

Kenneth P. Birman , !•ocial

September 26, 1992

Abstract

The diffmilty of developing reliable distributed software is an impediment to applying distributed
computing technology in many settings. Expeielne with the IsIs system suggests that a structured
aqproach based on virtually synchronous process groups yields systems that are substantially easier to
develop, exploit sophisticated forms of cooperative computation, and achieve high reliability. This paper
reviews six years of research on ISIS, describing the model, its implementation challenges, and the types
of applicatin to which ISIS has been applied.

1 Introduction

One might expect the reliability of a distributed system to follow directly from the reliability of its con-

stituents, but this is not always the case. The mechanisms used to structure a distributed system and to
implement cooperation between components play a vital role in determining how reliable the system will be.

Many contemporary distributed operating systems have placed emphasis on communication performance,

overlooking the need for tools to integrate components into a reliable whole. The communication primitives
supported give generally reliable behavior, but exhibit problematic semantics when transient failures or

system configuration changes occur. The resulting building blocks are, therefore, unsuitable for facilitating

the construction of systems where reliability is important.

This paper reviews six years of research on Isis, a system that provides tools to support the construction of

reliable distributed software. The thesis underlying Isis is that development of reliable distributed software
can be simplified using process groups and group programming tools. This paper motivates the approach

taken, surveys the system, and discusses our experience with real applications.

*The audxr is in the Department of Computer Science, Cornell Univemity, and was supported under DARPA/NASA grant

NAG-2-593, and by grants from IBM, HP, Siemens, GTE and Hitachi.

I



&Ask o111 0 pas.I

Figure 1: Broker's trading system

It will be helpful to uilustrate group programming and Isis in a setting where the system has found rapid

acceptance: brokerage and trading systems. These systems integrate large numbers of demanding applica-
tions and require timely reaction to high volumes of pricing and trading information.' It is not uncommon
for brokers to coordinate trading activities across multiple markets. Trading strategies rely on accurate

pricing and market volatility data. dynamically changing databases giving the finn's holdings in various

equities, news and analysis data, and elaborate financial and economic models based on relationships be-
tween financial instruments. Any distributed system in support of this application must serve multiple
communities: the firm as a whole, where reliability and security are key considerations; the brokers, who

depend on speed and the ability to customize the tading environment; and the system administrators, who
seek uniformity, ease of monitoring and control. A theme of the paper will be that all of these issues revolve
around the technology used to "glue the system together". By endowing the corresponding software layer

with predictable, fault-tolerant behavior, the flexibility and reliability of the overall system can be greatly

enhanced.

Figure 1 illustrates a possible interface to a trading system. The display is centered around the current

position of the account being traded, showing purchases and sales as they occur. A broker typically
authorizes purchases or sales of shares in a stock, specifying limits on the price and the number of shares.
These instructions are communicated to the trading floor, where agents of the brokerage or bank trade as
many shares as possible, remaining within this authorized window. The display illustrates several points:

I liformadion backplane. The broker would construct such a display by interconnecting elementary
widgets (graphical windows, computational ones, etc.) so that the output of one becomes the input

to another. Seen in the large, this implies the ability to publish messages and subscribe to messages
t Althoug this class of systems certainly demands high performance, the time costraints there we no rea-dame dead/iwes, such

the FAA's Advnced Automation System (CD901. This issue is discussed fiuther in Sec. 7.

2



d Jlu 50 t-W.

C M I o

Figure 2: Making an analytic service fault-tolerant

sent from program to program on topics that make up the "corporate information backplane" of the

brokerage. Such a backplane would support a naming ructure, communication interfaces, access

restrictions, and some sort of selective history mechanism. For example, upon subscribing to a topic,
an application will often need key messages posted to that topic in the past.

"* Customihaon. The display suggests that the system must be easily customized. The information
backplane must be organized in a systematic way (so that the broker can easily track down the name
of communication streams of interest) and flexible (allowing the introduction of new communication

streams while the system is active).

"* Hikrarchical swucture. Although the trader will teat the wide-area system in a seamless way,
communication disruptions are far more common on wide-area links (say, from New York to Tokyo

or Zurich) than on local-area ones. This gives the system a hierarchical structure composed of local
area systems which are closely coupled and rich in services, interconnected by less reliable and higher
latency wide-area communication links.

What about the reliability implications of such an architecture? In Fig. 1, the trader has introduced

a computed index of technology stocks against the price of lBM, and it is easy to imagine that such
customization could include computations critical to the trading strategy of the firm. In Figure 2, the

analysis widget is "shadowed" by additional copies, to indicate that it has been made fault-tolerant (i.e. it
would remain available even if the broker's workstation failed). A broker is unlikely to be a sophisticated
programmer, so fault-tolerance such as this would have to be introduced by the system - the trader's only

action being to request it, perhaps by specifying a fault-tolerance computational property associated with the

analytic icon. This means the system must automatically replicate or checkpoint the computation, placing
the replicas on processors that fail independently from the broker's workstation, and activating a backup if

the primary fails.

3



The requirements of modem trading environments are not unique to the application. It is easy to rephrase
this example in terms of the issues confronted by a team of seismologists cooperating to interpret the results

of a seismic survey underway in some remote and inaccessible region, a doctor reviewing the status of

patients in a hospital from a workstation at home, a design group collaborating to develop a new product,
or application programs cooperating in a factory-floor process control setting. The software of a modem
telecommunications switching product is faced with many of the same issues, as is software implementing a
database that will be used in a large distributed setting. To build applications for the networked environments

of the futue, technology is needed that will make it as easy to solve these sorts of problems as it is to build
graphical interfaces today.

A central premise of the ISMS projec shared with several other efforts [(.86, CD90, Pet87, KTHB89,

ADKM9 I], is that support for programming with distributed groups of cooperating programs is the key
to solving problems such as the ones seen above. For example, a fault-tolerant data analysis service
can be implemented by a group of programs that adapt transparently to failures and recoveries. The
publication/subscription style of interaction involves an implicit use of process groups: here, the group
consists of a set of publishers and subscribers that vary dynamically as brokers change the instnrments
that they trade. Although the processes publishing or subscribing to a topic do not cooperate directly,
when this sucture is employed, the reliability of the application will depend on the reliability of group

communication. It is easy to see how problems could arise if, for example, two brokers monitoring the same

stock see diflern pricing information.

Process groups of various kinds arise naturally throughout a distributed system. Yet, current distributed
computing environments provide little support for group communication patterns and programming. These
issues have been left to the application programmer, and application programmers have been largely unable
to respond to the challenge. In short, contemporay distributed computing environments prevent users fromw
realizing the potential of the distributed computing infrastructure on which their applications run.

The remainder of the paper is organized into three parts. The first defines the group programming paradigm
more carefully and discusses the algorithmic issues it raises. This leads into the Isis computational model,
called virtual synchrony. The next part discusses the tools from which Isis users construct applications. The
last part reviews applications that have been built over ISIS. The paper concludes with a brief discussion of
future directions for the project.

2 Process groups

Two styles of process group usage are seen in most Isis applications:

* Anonymous groups: Anonymous groups arise when an application publishes data under some "topic,"
and other processes subscribe to that topic. For an application to operate automatically and reliably,

anonymous groups should provide certain properties:

4



1. It should be possible to send messages to the group using a group address. The high-level

programmer should not be involved in expanding the group address into a list of destinations.

2. If the sender and subscribers remain operational, messages should be delivered exactly once; if

the sender fails, a message should be delivered to all or none of the subscribers. The application

programmer should not need to worry about message loss or d!uplication.

3. Messages should be delivered to subscribers in some sensible order. For example, one would

expect messages to be delivered in an order consistent with causal dependencies: if a message

m is publshed by a program that first received ml ... mj, then m might be dependent on these

prior messges. If some other subscriber will receive m as well as one or more of these prior

messages, one would expect them to be delivered first. Stronger ordering properties might also

be desired, as discussed later.

4. It should be possible for a subscriber to obtain a history of the group - a log of key events and

the order in which they were received.2 If n messages are posted and the first message seen by a

new subscriber will be message mj, one would expect messages ml ...m- I to be reflected in the

history, and that messages mj...m,, will all be delivered to the new process. If some messages

awe missing from the history, or included both in the history and in the subsequent postings,

incormect behavior might result.

SExplicit groups: A group is explicit when its members cooperate directly: they know themselves to

be members of the group, and employ algorithms that employ the list of members, relative rankings

within the list, or in which responsibility for responding to requests is shared. Explicit groups

have additional needs stemming from their use of group membership information: in some sense,

membership changes are among the information being published to an explicit group. For example,

a fault-tolerant service might have a primary member that takes some action and an ordered set of

backups that take over, one by one, if the current primary fails. Here, group membership changes

(failure of the primary) trigger actions by group members. Unless the same changes are seen in

the same order by all members, situations could arise in which there are no primaries, or several.

Similarly, a parallel database search might be done by ranking the group members and then dividing

the database into n parts, where n is the number of group members. Each member would do 1 /n'th

of the work, with the ranking determining which member handles which fragment of the database.

The members need consistent views of the group membership to perform such a search correctly;

otherwise, two processes might search the same part of the database while some other part remains

unscanned, or they might partition the database inconsistently.

2The appc&an itself would distinguish messages that need to be retained from those that can be discarded.

S



Thus, a number of technical problems must be considered in developing software for implementing distrib-

uted process groups:

"* Support for group communication, including addressing, failure atomicity, and message delivery

ordering.

"* Use of group mnmbership as an input. It should be possible to use the group membership or changes

in membership as input to a distributed algorithm (one run concurrently by multiple group members).

"* Synchronization. To obtain globally correct behavior from group applications, it is necessary to syn-

chronize the order in which actions are taken, particularly when group members will act independently

on the basis of dynamically changing, shared information.

The first and last of these problems have received considerable study. However, the problems cited are not
independent: their integration within a single framework is non-trivial. This integration issue underlies our

virtual synchrony execution model.

3 Building distributed services over conventional technologies

In this section we review the technical issues raised above. In each case, we start by describing the problem
as it might be approached by a developer working over a contemporary computing system, with no special

tools for group programming. Obstacles to solving the problems are identified, and used to motivate a
general approach to overcoming the problem in question. Where appropriate, we then comment on the

actual approach used in solving the problem within ISls.

3.1 Conventional message passing technologies

Contemporary operating systems offer three classes of communication services [Tan88]:

* Unreliable datagrwms: These services automatically discard corrupted messages, but do little addi-
tional processing. Most messages get through, but under some conditions messages might be lost in

transmission, duplicated, or delivered out of order.

* Remote procedure call: In this approach, communication results from a procedure invocation that
returns a reSulL RPC is a relatively reliable service, but when a failure does occur, the sender is

unable to distinguish between many possible outcomes: the destination may have failed before or

after receiving the request, or the network may have prevented or delayed delivery of the request or

the reply.

6



* Reliable data szws: Here, communication is performed over channels that provide flow control

and reliable, sequenced message delivery. Standard stream protocols include TCP, the ISO protocols,

and TP4. Because of pipelining, streams generally outperform RPc when an application sends large

volumes of data. However, the standards also prescribe rules under which a stream will be broken.

using conditions based on timeout or excessive retransmissions. For example, suppose that processes

A., B and C have connections with one another and the connection from A to B breaks due to a

communication failure, while all three processes and the other two connections remain operational.

Much like the situation after a failed RPC, A and B will now be uncertain regarding one-another's

status. Worse, C is totally unaware of the problem. In such a situation, the application may easily

behave in an inconsistent manez From this, one sees that a reliable data stream has guarantees little

stronger than an unreliable one: when channels break, it is not safe to infer that either endpoint has

failed, channels may not break in a consistent manner, and data in transit may be lost. Because the

conditions under which a stream break ame defined by the standards, one hab a situation in which

potentially inconsistent behavior is unavoidable.

These coniderations lead us to make a collection of assumptions about the network and message commu-

nication in the remainder of the papet First, we will assume that the system is structured as a wide-area

network (WAN) composed of local-ma networks (LANs) interconnected by wide-area communication

links. WAN issues will not be considered in this paper for reasons of brevity. We assume that each LAN

consists of a collection of machines (as few as two or three, or as many as one or two hundred), connected by

a collection of high speed, low latency communication devices. If shared memory is employed, we assume

that it is not used over the network. Clocks are not assumed to be closely synchronized.

Within a LAN, we assume that messages may be lost in transit, arrive out of order, be duplicated, or be

discarded because of inadequate buffering capacity. We also assume that LAN communication partitions

are rare. The algorithms described below, and the Isis system itself, may pause (or make progress in

only the largest partition) during periods of partition failure, resuming normal operation only when normal

communication is restored.

We will assume that the lowest levels of the system are responsible for flow control and for overcoming

message loss and unordered delivery. In Isis, these tasks are accomplished using a windowed acknowledge-

ment protocol similar to the one used in TCP, but integrated with a failure detection subsystem. With this

(non-standard) approach, a consistent system-wide view of the state of components in the system and of the

state of communication channels between them can be presented to higher layers of software. For example,

the IiS transport layer will only break a communication channel to a process in situations where it would

also report to any application monitoring that process that the process has failed. Moreover, if one channel

to a process is broken, all channels are broken.



3.2 Failure model

Throughout this paper, processes and processors are assumed to fail by halting, without initiating erroneous

actions or sending incorrect messages. This raises a problem: transient problems - such as an unresponsive

swapping device or a temporary communication outage - can mimic halting failures. Because we will

want to build systems guaranteed to make progess when failures occur, this introduces a conflict between

"accurate" and "timely" failure detection.

One way to overcome this problem, supported by Isis, integrates the communication transport layer with
the failure detection layer to make processes appear to fail by halting, even when this may not be the

case: a fail-stop model (SS83]. To implement such a model, a system uses an agreement protocol to

maintain a system membership list: only processes included in this list are permitted to participate in the

system, and non-responsive or failed processes are dropped [CriB8, RB91]. If a process dropped from

the list later resumes communication, the application is forced to either shut down gracefully or to run a
"reconnection" protocoL The message transport layer plays an important role, both by breaking connections

and by intercepting messages from faulty processes.

In the remainder of this paper we assume a message transport and failure-detection layer with the properties
of the one used by Isms. To summarize, a process starts execution by joining the system, interacts with it
over a period of time during which messages are delivered in the order sent, without loss or duplication, and
then termmat (f it terminates) by halting detectably. Once a process terminates, we will consider it to be

permanently gone from the system, and assume that any state it may have recorded (say, on a disk) ceases

to be relevant. If a process experiences a transient problem and then recovers and rejoins the system, it is

treated as a completely new entity - no attempt is made to automatically reconcile the state of the system

with its state prior to the failure.

3.3 Building groups over conventional technologies

Group addressing

Consider the problem of mapping a group address to a membership list, in an application where the
membership could change dynamically due to processes joining the group or leaving. The obvious way

to approach this problem involves a memership service [BJ87, Cri88]. Such a service maintains a map
from group names to membership lists. Deferring fault-tolerance issues, one could implement such a

service using a simple program that supports remotely callable procedures to register a new group or group
member, obtain the membership of a group, and perhaps to forward a message to the group. A process could
then transmit a message either by forwarding it via the naming service, or by looking up the membership
information, caching it, and transmitting messages directly.3 The first approach will perform better for

31n th latter case, one would also need a mechanism for invatidaing cached addressing information when the group membership

changes (this is not a trivial problem, but the need for brevity precludes discussing it in detail).

8



one-time interactions; the second would be preferable in an application that sends a stream of messages to
the group.

This form of group addressing also raises a scheduling question. The designer of a distributed application
will want to send messages to all members of the group, under some reasonable interpretation of the term
"all". The question, then, is how to schedule the delivery of messages so that the delivery is to a reasonable
set of processes. For example, suppose that a process group contains three processes, and a process sends
many messages to it. One would expec these messages to reach all three members, not some other set
reflecting a stale view of the group composition (e.g. including processes that have left the group, or
omitting some of the current members).

The solution to this problem favored in our work can be understood by thinking of the group membership
as data in a database shared by the sender of a multi-destination message (a muki/casr), and the algorithm
used to add new members to the group. A multicast "reads" the membership of the group to which it is
sent, holding a form of read-lock until the delivery of the message occus. A change of membership that
adds a new member would be treated like a "write" operation. requiring a write-lock that prevents such an
operation from executing while a prior multicast is underway. It will now appear that messages are delivered
to groups only when the membership is not changing.

A problem with using locking to implement address expansion is cost. Accordingly, Isis uses this idea, but
does not employ a database or any sort of locking. And, rather than implement a membership server, which
could represent a single point of failure, Isis replicates knowledge of the membership among the members
of the group itself. This is done in an integrated mamnzer so as to perform address expansion with no extra
messages or unnecessary delays and guarantee the logical instantaneity property that the user expects. For
practical purposes, any message sent to a group can be thought of as reaching all of its members at the same

time.

Logical time and cat' sal dependency

The phrase "reaching all of its members at the same time" raises an issue that will prove to be fundamental
to message-delivery ordering. Such a statcment presupposes a temporal model. What notion of time applies
to distributed process group applications?

In 1978, Leslie Lamport published a seminal paper that considered the role of time in distributed algo-
rithms [Lam78]. Lamport asked how one might assign timestamps to the events in a distributed system so
as to correctly capture the order in which events occured. Real-time is not suitable for this: each machine
will have its own clock, and clock synchronization is at best imprecise in distributed systems. Moreover,

4In this paper the tarm muai•tu refers to sending a single message to the members of a process group. The term broadcast,
common in the literature, is sometimes confused with the hardware broadcast capabilities of devices like EtherneL While a multicast
might make use of hardware broadcast, this would simply represent one possible implementation sutategy.

9



operating systems intrxouce unpredictable software delays, processor execution speeds can vary widely

due to cache affinity effects, and scheduling is often unpredictable. These factors make it hard to compare

timestamps assigned by different machines.

As an alternative, Lamport suggested, one could discuss distributed algorithms in terms of the dependencies

between the events making up the system execution. For example, suppose that a process first sets some
variable z to 3, and then sets y = z. The event corresponding to the latter operation would depend upon
the former one - an example of a local dependency. Similarly, receiving a message depends upon sending it.

This view of a system leads one to define the potential causality relationship between events in the system.
ht is the irreflexive transitive closure of the message send-receive relation and the local dependency relation
forprocesses in the system. If event a happens before event b in a distributed system, the causa!ity relation
will capture this.

In Lamport's view of time, we would say that two events are concurrent iff they are not causally related:

the issue is not whether they actually executed simultaneously in some run of the system, but whether the
system was sensitive to their respective ordering. Given an execution of a system, there exists a large set
of equivalent executions arrived at by rescheduling concurrent events while retaining the event ordering
constraints represented by causality relation. The key observation is that the causal event ordering captures
all the essential ordering information needed to describe the execution: any two physical executions with
the same causal event ordering describe indistinguishable runs of the system.

Recall our use of the phrase "reaching all of its members at the same time". Lamport has suggested that for
a system described in terms of a causal event ordering, any set of concurrent events, one per process, can be
thought of as representing a logical instant in time. Thus, when we say that all members of a group receive
a message at the same time, we mean that the message delivery events are concurrent and totally ordered
with respect to group membership change events. Causal dependency provides the fundamental notion of
time in a distributed system, and plays an important role in the remainder of this section.

Message delivery ordering

Consider Figure 3-A, in which messages ml m2 m3 and m4 are sent to a group consisting of processes
sl a and S3. Messages ml and m2 are sent concurrently and are received in different orders by S2 and s3.

In many applications, 9 and .93 would behave in an uncoordinated or inconsistent manner if this occurred.
A designer must, therefore, anticipate possible inconsistent message ordering. For example, one might
design the application to tolerate such mixups, or explicitly prevent them from occurring by delaying the
processing of mI and m2 within the program until an ordering has been established. The real danger is that
an designer could overlook the whole issue - after all, two simultaneous messages to the program that arrive
in different orders may seem like an improbable scenario - yielding an application that usually is correct,
but may exhibit abnormal behavior when unlikely sequences of events occur, or under periods of heavy

10



C, , . I ie. 5

m Mm

Figure 3: Message ordering problems

load. (Under load, multicast delivery latencies rise, increasing the probability that concurrent multicasts

could overlap).

This is only one of several delivery ordering problems illustrated in the Figure 3. Consider the situation
when 83 receives message m3. Message m3 was sent by .i after receiving m2, and might refer to or depend
upon m2. For example, m2 might authorize a certain broker to trade a particular account, and m3 could
be a trade that the broker has initiated on behalf of that account. Our execution is such that 83 has not yet
received m2 when m3 is delivered. Perhaps m2 was discarded by the operating system due to a lack of
buffering space. It will be retransmitted, but only after a brief delay during which m3 might be received.

Why might this matter? Imagine that s3 is displaying buy/sell orders on the trading floor. 83 will consider
m3 invalid, since it will not be able to confirm that the trade was authorized. An application with this
problem might fail to carry out valid trading requests. Again, although the problem is solvable, the question
is whether the application designer will have anticipateu the problem and programmed a correct mechanism

to compensate when it occurs.

In our work on ISIS, this problem is solved by including a context record on each message. If a message
arrives out of order, this record can be used to detect the condition, and to delay delivery until prior messages
arrive. The context representation we employ has size linear in the number of members of the group within

which the message is sent (actually, in the worst case a message might carry multiple such context records,
but this is extremely rare). However, the average size can be greatly reduced by taking advantage of
rTpetitious communication patterns, such as the tendency of a process that sends to a group to send multiple
messages in succession [BSS91]. The imposed overhead is variable, but on the average small. Other
solutions to this problem are described in [PBS89, BJ87].

Message m4 exhibits a situation that combines several of these issues. m4 is sent by a process that previously
sent ml and is concurrent with m2, m3, and a membership change of the group. One sees here a situation

II



in which all of the ordering issues cited thus far arise simultaneously, and in which failing to address any of

them could lead to errors within an important class of applications. As shown, only the group addressing

property proposed in the previous section is violated: were m4 to trigger a concurrent database search,

process al would search the fiA third of the database, while s2 searches the second ha/f- one sixth of the

database would not be searched. However, the figure could easily be changed to simultaneously violate

other ordering properties.

State transfer

Figure 3-B illustrates a slightly different problem. Here, we wish to transfer the state of the service to proces
a3: perhaps s3 represents a program that has restarted after a failure (having lost prior state) or a server that

has been added to redistribute load. Intuitively, the state of the server will be a data structure reflecting the
data managed by the service, as modified by the messages received prior to when the new member joined

the group. However, in the execution shown, a message has been sent to the server concurrent with the
membership change. A consequence is that S3 receives a state which does not reflect message in5 , leaving it

inconsistent withsi and s2. Solving this problem involves a complex synchronization algorithm (we won't

present it here), probably beyond the ability of a typical distributed applications programmer

Fault tolerance

Up to now, our discussion has ignored failures. Failures cause many problems; here, we consider just one.
Suppose that the sender of a message were to crash after some, but not all, destinations receive the message.
The destinations that do have a copy will need to complete the transmission or discard the message. The

protocol used should achieve "exactly-once delivery" of each message to those destinations that remain
operational, with bounded overhead and ,'torage. On the other hand, we need not be concerned with delivery

to a process that fails during the protocol, since such a process will never be heard from again (recall the

fail-stop model).

Protocols to solve this problem can be complex, but a fairly simple solution will illustrate the basic
techniques. This protocol uses three rounds of RPC's as illustrated in Figure 4. During the first round, the
sender sends the message to the destinations, which acknowledge receipL Although the destinations can

deliver the message at this point, they need to keep a copy: should the sender fail during the first round, the
destination processes that have received copies will need to finish the protocol on the sender's behalf. If no
failure occurs, then the sender tells all destinations that the first round has finished. They acknowledge this
message and make a note that the sender is entering the third round. During the third round, each destination

discards all information about the message - it deletes the saved copy of the message and any other data it
was maintaining.

12



O to dhe mou

Nomad 
I2 V

Naiad 2 OK I* guaft cosh

Figure 4: Three-round reliable multicast

When a failure occurs, a process that has received a first- or second-round message can terminate the

protocoL The basic idea is to have some member of the destination set take over the round that the sender

was rmming when it failed; processes that have already received messages in that round detect duplicates

and respond to them as they responded after the original reception. The protocol is straightforward, and we

leave the details to the readet

Recall that in Sec. 3.1, we indicated that system-wide agreement on membership was an important property

of our overall approach. It is interesting to realize that a protocol such as this is greatly simplified because

failures am reported consistently to all processes in the system. If failure detection were by an inconsistent

mechanism it would be very difficult to convince oneself that the protocol is correct (indeed, as stated, the

protocol could deliver duplicates if failures are rported inaccurately). The merit of solving such a problem

at a low level is that we can then make use of the consistency properties of the solution to in reasoning about

protocols that react to failures.

This three-round multicast protocol does not obtain any form of pipelined or asynchronous data flow when

invoked many times in succession, and the use of RPC limits the degree of communication concurrency

during each round (it would be better to send all the messages at once, and to collect the replies in parallel).

These features make the protocol expensive. Much better solutions have been described in the literature

(see [BSS91, BJ87] for more detail on the approach used in IsiS, and for a summary of other work in the

area).

Summary of issues

The above discussion pointed to some of the potential pitfalls that confront the developer of group software

who works over a conventional operating system: (1) weak support for reliable communication, notably.

13



inconsistency in the situations in which channels break, (2) group address expansion, (3) delivery ordering

for concurrent messages, (4) delivery ordering for sequences of related messages, (5) state transfer, and (6)

failure atomicity. This list is not exhaustive: we have overlooked questions involving real-time delivery

guarantees, and persistent databases and files. However, our work on Isis treats process group issues under

the assumption that any real-time deadlines are long compared to communication latencies, and that process

states awe volatile, hence we view these issues as beyond the scope of the current paper.5 The list does cover

the major issues that arise in this more restrictive domain. [BC90]

At the start of this section, we asserted that modem operating systems lack the tools needed to develop

group-based software. This assertion goes beyond standards such as UNIX to include next-generation

systems such as NT, Mach, Chorus and Ameoba.6 A basic premise of this paper is that, although all of these

problems can be solved, the ,'omplexity associated with working out the solutions and integrating them in a

single system will be a sigr.ficant barrier to application developers. The only practical approach is to solve

these problems in the olistributed computing environment itself, or in the operating system. This permits a

solution to be. enginered in a way that will give good, predictable performance and that takes full advantage

of hardware and operating systems features. Furthermore, providing process groups as an underlying tool

permits the programmer to concentrate on the problem at hand. If the implementation of process groups is

lef to the application designer, non-experts am unlikely to use the approach. The brokerage application of

the introduction would be extremely difficult to build using the tools provided by a conventional operating

system.

4 VWtual synchrony

Earlier, it was observed that integration of multiple group programming mechanisms into a single envi-

ronment is also an important problem. Our work addresses this issue through an execution model called

virtual synchrony, motivated by prior work on transaction r -rializability. We will present the approach in

two stages. First, we discuss an execution model called close synchrony. This model is then relaxed to

arrive at the virtual synchrony model. A comparison of our work with the serializability model appears in

Sec. 7.

The basic idea is to encourage programmers to assume a closely synchronized style of distributed execu-

tion (BJ89, Sch8S8:

*These issues can be addressod within die tools layer of UtL, and in fact the current system includes an optional subsystem for

management of persistent dam.
%n fairness. it should be noted that Mach IPC provides stong guarantees of reliability in its communication subsystem.

However. Mach may experience unbounded delay when a node failure occurs. Chorus includes a port-group mechanism, but with

weak semantics, patterned after earlier work on the V system [CZ831. Ameoba, which initially lacked group support, has recently

been extended to a mechanism appaently motivated by our work on Ists [KTHB89].

14



Sl S SsS, St

C' "4 .,1 1%
S2

M, M -M&
MM4

4 4

Figure 5: Closely synchronous execution

"* Execution of a process consists of a sequence of events, which may be internal computation, message

sos, message deliveries, or changes to the membership of groups that it creates or joins.

"* A global execution of the system consists of a set of process executions. At the global level, one can
talk about messages sent as multicasts to process groups.

"* Any two processes that receive the same multicasts or observe the same group membership changes
see the corresponding local events in the same relative order.

"* A multicast to a process group is delivered to its fidl membership. The send and delivery events are
considered to occur as a single, instantancous event.

Close synchrony is a powerful guarantee. In fact, as seen in Fig. 5, it eliminates all the problems identified
in the preceding section:

* Weak communication reliability guarantees: A closely synchronous communication subsystem ap-
pears to the programmer as completely reliable.

* Group address e.panuion: In a closely synchronous execution, the membership of a process group is
fixed at the logical instant when a multicast is delivered.

* Delivery ordering for concurrent messages: In a closely synchronous execution, concurrently issued
multicasts are distinct events. They would, therefore, be seen in the same order by any destinations
that they have in common.

* Delivery ordering for sequences of related messages: In Figure 5a, process sl sent message m3
after receiving m2 hence m3 may be causally dependent upon m2. Processes executing in a closely
synchronous model would never see anything inconsistent with this causal dependency relation.

15



VI

Figure 6: Asynchronous pipelining

* State transfer. State transfer occurs at a well defined instant in time in the model. If a group member

hDeckpoints the group state at the instant when a new member is added, or sends something based on

the state to the new member, the state will be well defined and complete.

* Failure atomicity- The close synchrony model treats a multicast as a single logical event, and reports
failures through group membership changes which are ordered with respect to multicast. The all or

nothing behavior of an atomic multicast is thus implied by the model

Unfortunately, although closely synchronous execution simplifies distributed application design, the ap-

proach cannot be applied directly in a practical setting. First, achieving close synchrony is impossible in

the presense of failures Say that processes st and a2 are in group G and message m is multicast to G.

Consider st at the instant before it delivers m. According to the close synchrony model, it can only deliver
m if j2 will do so also. But, at has no way to be sure that s2 is still operational, hence si will be unable to

make progress (TS92]. Fortunately, we can finesse this issue: if s2 has failed, it will hardly be in a position
to dispute the assertion that m was delivered to it first!

A second concern is that maintaining close synchrony is expensive. The simplicity of the approach stems
from the fact that the entire process group advances in lock step. But, this also means that the rate of
progress each group member can make is limited by the speed of the other members, and this could have a

huge performance impact. Needed is a model with the conceptual simplicity of close synchrony, but that is
capable of efficiently supporting very high throughput applications.

In distributed systems, high throughput comes from asynchronous interactions: patterns of execution

in which the sender of a message is permitted to continue executing without waiting for delivery. An

asynchronous approach treats the communications system like a bounded buffer, blocking the sender only
when the rate of data production exceeds the rate of consumption, or when the sender needs to wait for a

16



reply or some other input (Figure 6). The advantage of this approach is that the latency (delay) between

the sender and the destination does not affect the data transmission rate - the system operates in a pipelined

manner, permitting both the sender and destination to remain continuously active. Closely synchronous

execution precludes such pipelining, delaying execution of the sender until the message can be delivered.

This motivates the virtual synchrony approach. A virtually synchronous system permits asynchronous exe-

cutons for which there exists some closely synchronous execution indistinguishable from the asynchronous

one. In general, this means that for each application, events need be synchronized only to the degree that
the application is sensitive to event ordering. In some situations, this approach will be identical to close

synchrony. In others, it is possible to deliver messages in different orders at different processes, without

the application noticing. When such a relaxation of order is permissable, a more asynchronous execution

results.

Order sensitivity in distributed systems.

We are, thus, lead to a final technical question: "when can synchronization be kaxed in a virtually
synchronous distributed system?" Suppose that we wish to develop a service to manage the trading history

for a set of commodities. A set of tickerplants7 monitorprices of futures contracts for soybeans, pork-bellies,
and other commodities. Each price change causes a multicast by the tickerplant to the applications tracking

this data. Initially, assume that applications track a single commodity at a time.

One can imagine two styles of tickerplant. In the first, quotes might originate in any of several tickerplants,

hence two different quotes (perhaps, one for Chicago and one for New York) could be multicast concurrently

by two different processes. In a second design, only one tickerplant would actively multicast quotes for

a given commodity at a time. Other tickerplants might buffer recent quotes to enable recovery from the

failure of the primary server, but would never multicast them unless the primary fails. Now, suppose that a
key correctness constraint on the system is that any pair of programs that monitor the same commodity see

the same sequence of values. Close synchrony would guarantee this.

How sensitive are the applications to event ordering in this example? The answer depends on the tickerplant

protocol. Using the first tickerplant protocol, the multicast primitive must deliver concurrnt messages in

the same order at all overlapping destinations. This is normally called an atomic delivery ordering, and is

denoted ABCAST.

The second style of system has a simpler ordering requirement. Here, as long as the primary tickerplant

for a given commodity is not changed it suffices to deliver messages in the order they were sent: messages
sent concurrenty concern different commodities, and since the data for different commodities is destined

to independent application programs, the order in which updates are done for different commodities should

not be noticable. The ordering requirement for such an application would be first in, first out (FIFO).

7A tickurplant is a program or device diea receives telemetry input directly from a stock exchange or some similar source.

17



S, S2

q,

PASS

Figure 7: Causal ordering

Now, suppose that it were desirable to dynamically change the primary in response to a failure or to balance

load. For example, perhaps one tickerplant is handling both soybeans and pork-bellies in a heated market,

while mother is monitoring a slow day in petroleum products. The latency on reporting quotes could be

reduced by sharing the load more evenly. However, even during the reconfiguration, it remains important to

deliver messages in the order they were sent, and this ordering might span multiple processes. If tickerplant

ea sends quote qj, and then sends a message to tickerplant a2 telling it to take over, tickerplant j2 might

send quote qz (figure 7). Logically, q2 follows qj, but the delivery order is determined by a transmission

order that arises on a causal chain of events sparming multiple processes. A FIFO order would not ensure

that all applications receive the quotes in the order they were sent. Thus, a sufficient ordering property for

the second style of system is that if qj causally precedes qj, then qj should be delivered before qz at shared

destinations. A multicast with this property achieves causal delivery ordering, and is denoted CECAST.

Notice that CCA.w is weaker than ADcAS, because it permits messages that were sent concurrently to be

delivered to overlapping destinations in different orders.$

On the odwer hand, consider the implications of introducing an application that combines both pork and

beans quotes as part of its analysis. With such an application in the system (actually, with two or more such

applications), - - there exists a type of observer that could detect the type of inconsistent ordering CBCAST

permits. Thus, cDcAsT would no longer be adequate to ensure consistency when such an application is in

Use.

In effect, CWBC can be used when any conflicting multicasts are uniquely ordered along a single causal

chain. In such cases, the CBCAST guarantee is strong enough to ensure that all the conflicting multicasts are

Tha satwmnent that CBCAsT is "weaker" tdan ABCAZT may seem anWreci as we have stared die proble•m, de two protocols

simply provide diffrent forms of ordeing. Howevm h Isis version of ASCASr WaUaly extends the paria €CAST ordering into
a oWl one: it is a caia*at.ma multicaut primitive. An 'umnen can be made that an A wCAST pntocol that is not can. cannot

be ued arynchmuously, hence we see stong maons for implementing ABCAST in this manna.

18



seen in the same order by all recipients - specifically, the causal dependency order. If concurrent multicasts

arise in such a system, the data multicast on each independent causal chain will be independent of data

multicast on other causal chains: the operations performed when the corresponding messages are delivered

will commute. Thus, the interleaving permitted by CBCAST is not noticable within the application.

Efficient load sharing during surges of activity in the pork-bellies pit may not seem like a compelling reason

to employ causal multicast. However, the same communication pattern also arises in a different context: a

process group that manages replicated (or coherently cached) data. Processes that update such data typically

acquire a lock, then issue a stream of asynchronous updates, and then release the lock. There will generally

be one update lock for each class of related data items, so that acquisition of the update lock rules out any

possible conflicting update&9 Indeed, mutual exclusion can sometimes be inferred from other properties

of an algorithm, hence such a pattern may arise even without an explicit locking stage. By using CECAST

for this communication, an efficient, pipelined data flow is achieved. In particular, there will be no need to

block the sender of a multicast, even momentarily, unless the group membership is changing at the time the

message is sent.

The tremendous performance advantage of CBCAST over ABCAsT may not be immediately evident. However,

when one considers how fast modem processors am in comparison with communication devices, it should

be dear that any primitive that unnecessarily waits for a reply to a message could introduce substantial

overhead. This occurs when ABCAST is used asynchronously, but where the sender is sensitive to message

delivery ordez For example, it is common for an application that replicates a table of pending requests

within a group to use multicast each new request, so that all members can maintain the same table. In such

cases, if the way that a request is handled is sensitive to the contents of the table, the sender of the multicast

must wait until the multicast is delivered before acting on the request. Using AaCAST the sender will need

to wait until the delivery order can be determined. Using CBCAST, the update can be issued asynchronously,

and applied immediately to the copy maintained by the sender The sender thus avoids a potentially long

delay, and can immediately continue computation or reply to the request. When a sender generates bursts

of updates, also a common pattern, the advantage of cBcAsr over ABCAST is even greater.

The disadvantage to using CBCAST is that the sender needs mutual exclusion on the pan of the table being

updated. However, our experience suggests that if mutual exclusion has strong benefits, it is not hard

to design applications to have this property. A single locking operation may suffice for a whole series

of multicasts, and in some cases locking can be entirely avoided just by appropriate structuring the data

itelf. This translates to a huge benefit for many asynchronous applications, as seen in the performance data

presented in CBSS91 ].

The distinction between causal and total event orderings (CECAST and ABCAsT) has parallels in other

settings. Although Isis was the first distributed system to enforce a causal delivery ordering as part of

nsi applications, locks awe used primarily for mutual exclusion on possibly conflicting operations. such as updates on related
data items. In the cas of replicated data, this results in an algorithm similar to a primay copy update in which the -primary" copy

Change8 dynamically. The execution model is non-trwanacionaL and there is no need for reed-locks or for a two-phase locking rule.
i'hts b discussed furthr in Sec. 7.

19



a communication subsystem (Bir85], the approach draws on Lamport's prior work on logical notions of
time. Moreover, the approach was in some respects anticipated by work on primary copy replication

in database systems [BHG87]. Similarly, close synchrony is related both to Lamport's state machine

approach to developing distributed software [Sch90] and to the database serializability model, discussed

further below. Work on parallel processor architectures has yielded a memory update model called weak

comistency [DSB86, TH90], which uses a causal dependency principle to increase parallelism in the cache

of a parallel processor And, a causal correctness property has been used in work on lazy update in shared

memory multiprocessors [ABHN91] and distributed database systems [JB89, LLS90]. A more detailed
discussion of the conditions under which CBCAsT can be used in place of ABCAT appears in [Sch88, BJ89].

4.1 Summary of benefits due to virtual synchrony

Brevity precludes a more detailed discussion of virtual synchrony, or how it is used in developing distributed

algorithms within IsmS. However, it may be useful to summarize the benefits of the model:

"* Allows code to be developed assuming a simplified, closely synchronous execution model.

"* Supports a meaningful notion of group state and state transfer, both when groups manage replicated
data, and when a computation is dynamically partitioned among group members.

"* Asynchronous, pipelined communication.

"* Treatment of communication, process group membership changes and failures through a single,

event-oriented execution modeL

"* Failure handling through a consistently presented system membership list integrated with the com-

munication subsystem. This is in contrast to the usual approach of sensing failures through timeouts
and channels breaking, which would not guarantee consistency.

The approach also has limitations:

"• Reduced availability during LAN partition failures: only allows progress in a single partition, and

requires that a majority of sites be available in that partition.

"* Risks incorrectly classifying an operational site or process as faulty.

The virtual synchrony model is unusual in offering these benefits within a single framework. Moreover,

theoretical arguments exist that no system that provides consistent distributed behavior can completely evade
these limitations. Our experience has been that the issues addressed by virtual synchrony are encountered

in even the simplest distributed applications, and that the approach is general, complete, and theoretically

sound.

20



- SW Cbi a0G 1 fIuuNc~

Figure 8: Styles of groups

5 The Isis Toolkit

The Isis toolkit provides a collection of higher-level mechanisms for forming and managing process groups

and implementing group-based software. This section illustrates the specifics of the approach by discussing

the styles of process group supported by the system and giving a simple example of a distributed database

application.

Isis is not the first system to use process groups as a programming tool: at the time the system was initially

developed, Cheriton's V system had received wide visibility [CZ83]. More rcenx y, group mechanisms have

become common, exemplified by the Ameoba system [KTHB89], the Chorus operating system [RAA+ 88],

the Psync system [PBS89], a high availability system developed by Ladin and Liskov ILLS90], IBM's AAS

system [CD90], and Transis [ADKM91]. Nonetheless, Isis was first to propose the virtual synchrony model

and to offer high performance, consistent solutions to a wide variety of problems through its toolkit. The

approach is now gaining wide acceptance."'

5.1 Styles of groups

The efficiency of a distributed system is limited by the information available to the protocols employed for

communication. This was a consideration in developing the Isis process group interface, where a tradeoff

had to be made between simplicity of the interface and the availability of accurate information about

group membership for use in multicast address expansion. As a consequence, the Isis application interface

introduces four styles of process groups that differ in how processes interact with the group, illustrated in

'*At die time of this writing our group is working with the Open Software Foundation on integration of a new version of the

technology into Mach (the OSF I/AD version) and with Unix InternationaL which plans a reliable group mechanism for U1 Atlas.

21



Fig. g (anonymous groups are not distinguished from explicit groups at this level of the system). Isis is

optimized to detect and handle each of these cases efficiently.

Peer groups: These arise where a set of processes cooperate closely, for example to replicate data. The

membership is often used as an input to the algorithm used in handling requests, as for the concurrent

database search described earlier.

Client-server groups: In ISIS, any process can communicate with any group given the group's name and

appropriate permissions. However, if a non-member of a group will multicast to it repeatedly, better

performance is obtained by first registering the sender as a client of the group; this permits the system

to optimize the group addressing protocoL

Dqjjusion groups: A diffusion group is a client-server group in which the clients register themselves but in

which the members of the group send messages to the full client set and the clients are passive sinks.

Hierarchical groups: A hierarchical group is a structure built from multiple component groups, for

reasons of scale. Applications that use the hierarchical group initially contact its root group, but

are subsequently redirected to one of the constituent "subgroups". Group data would normally be

partitioned among the subgroups. Although tools are provided for multicasting to the full membership

of the hierarchy, the most common communication pattern involves interaction between a client and

the members of some subgroup.

There is no requirement that the members of a group be identical, or even coded in the same language or

executed on the same architecture. Moreover, multiple groups can be overlapped and an individual process

can belong to as many as several hundred different groups, although this is uncommon. Scaling is discussed

further below.

5.2 The toolkit interface

As noted earlier, the performance of a distributed system is often limited by the degree of communication

pipelining achieved. The development of asynchronous solutions to distributed problems can be tricky, and

many ISIS users would rather employ less efficient solutions than risk errors. For this reason, the toolkit

includes asynchronous implementations of the more important distributed programming paradigms. These

include a synchronization tool that supports a form of locking (based on distributed tokens), a replication tool

for managing replicated data, a tool for fault-tolerant primary-baclh , server design that load-balances by

making different group members act as the primary for different requests, and so forth (a partial list appears

in Table I. Using these tools, and following programming examples in the IsIs manual, even non-experts

have been successful in developing fault-tolerant, highly asynchronous distributed software.

22



"* Process groups: create, delete, join (transferring state).

"* Group muldticast: CBCAsT, ABCAST, collecting 0, 1 QUORUM or ALL replies (0 replies gives an

asynchronous multicast).

"* Synchronization: Locking, with symbolic strings to represent locks. Deadlock detection or avoidance

must be addressed at the application level. Token passing.

"* Replicated data: Implemented by broadcasting updates to group having copies. Transfer values to

processes that join using state transfer facility. Dynamic system reconfiguration using replicated

configuration data. Oieckpoint/update logging, spooling for state recovery after failure.

"* Monitoring facilities: Watch a process or site, trigger actions after failures and recoveries. Monitor

changes to process group membership, site failures, etc.

"* Distributed execution facilities: Redundant computation (all take same action). Subdivided among

multiple servers. Coordinator-cohort (primary/backup).

"* Automated recovery: When site recovers, program automatically restarted. If first to recover, state

loaded from logs (or initialized by software). Else, atomically join active process group and transfer

state.

"* WAN communication: Reliable long-haul message passing and file transfer facility.

Table I: ISIS tools at process group level

Figures 9 and 10 show a complete, fault-tolerant database server for maintaining a mapping from names

(ascii strings) to salaries (integers). The example is in standard C. The server initializes Isis and declares

the procedures that will handle update and inquiry requests. The isis-mainloop dispatches incoming

messages to these procedures as needed (other styles of main loop are also supported). The formatted-I/O

style of message generation and scanning is specific to the C interface, where type information is not

available at runtime.

The "state transfer" routines are concerned with sending the current contents of the database to a server that

has just been started and is joining the group. In this situation, Isis arbitrarily selects an existing server to

do a state transfer, invoking its state sending procedure. Each call that this procedure makes to xfer-out

will cause to an invocation of rcv.state on the receiving side; in our example, the latter simply passes

the message to the update procedure (the same message format is used by send-state and update). Of

course, there are many variants on this basic scheme; for example, it is possible to indicate to the system that

only certain servers should be allowed to handle state transfer requests, to refuse to allow certain processes

to join, and so forth.

The client program does a pg.lookup to find the server. Subsequently, calls to its query and update

procedures are mapped into messages to the server. The BCASF calls are mapped to the appropriate default

23



#include "isi3.h"

#def ine UPDATE 1

#define QUERY 2

maino(

isis mnit (0);
isis_.ntry(UPDATE, update, "update");

isis_entry (QUERY, query, "query");

pg-join("/demo3/salarie3", PG-XFER, send-state, rcv-state, 0);

isis-mainloop(O);

update (mp)

register message *mp;

char name(32];

mnt salary;
msg-get(mp, "%3,%d", name, &salary);

set-salary(name, salary);

query (mp)
register message *mp;

char name[321;

int. salary;
msg-get(mp, "%3,%d", nam)

salary - get-salary(name);

reply(mp, "%Wd", salary);

send-state()

struct sdb-entry *sp;

for(sp - sdb-head; 3p !- sdb-tail; ap 3 p->s-next)

xfer-out("%3,%d"-, sp->s-name, 3p->s salary);

rcv-state (mp)

register message *mp;

update (mp);

Figure 9: A simple database server

24



Uinclude "isis.h"
#define UPDATE 1
#define QUERY 2
address *serVer;
main()

isis-init(O);
/* Lookup database and register as a client (for be.ter performance) */

server - pglookup("/demos/salaries");
pg_client (server);

update (name, salary)
char *nae;
I

bcast(seru..w UPDATE, "%s,%d*, name, salary, 0);
I

get... "lary (n. .)

char *name,

int salary;
be° -t(server, QUERY, "%s", name, 1, "%d", &salary);

return (salary) ;

Figure 10: A client of the simple database service

25



HISTORICAL

PRICE

ANALYSIS M
•T•E MOUL TELEMTR INPUT

(PRICES. ETC.)- 0 N2
MONITOR DATA FEEDS

LAN MANAE O-, /W SPOOtE ,AAN, ZUCKH. ETC.

Figure 11: Process group architecture of brokerage system

for the group - ABCAST in this case.

The database server of Figure 9 uses a redundant style of execution in which the client broadcasts each

request and will receive multiple, identical replies from all copies. In practice, the client will wait for the

first reply and ignore all others. Such an approach provides the fastest possible reaction to a failure, but has

the disadvantage of consuming n times the resources of a fault-intolerant solution, where n is the size of the

process group. An alternative would have been to subdivide the search so that each server performs I/n 'th

of the work. Here, the client would combine responses from all the servers, repeating the request if a server

fails instead of replying, a condition readily detected in Isis.

Isis interfaces have been developed for C, C++., Fortran, Common Lisp, Ada and Smalltalk, and ports of Isis

exist for UNIX-workstations and mainframes from all major vendors, as well as for Mach, Chorus, ISC and

SCO UNIX, the DEC VMS system, and Honeywell's Lynx OS. Data within messages is represented in the

binary format used by the sending machine, and converted to the format of the destination upon reception

(if necessary), automatically and transparently.

6 Who uses Isis, and how?

This section briefly reviews several Isis applications, looking at the roles that Isis plays.

6.1 Brokerage

26



A number of Isis users are concerned with financial computing systems such as the one cited in the
introduction. Figure I1 illustrates such a system, now seen from an internal perspective in which groups
underlying the services employed by the broker become evident. The architecture is a client-server one,
in which the servers filter and analyze streams of data. Fault-tolerance here refers to two very different
aspects of the application. First, financial systems must rapidly stamt failed components and reorganize
themselves so that service is not interrupted by software or hardware failures. Second, there are specific
system functions that require fault-tolerance at the level of files or database, such as a guarantee that after
rebooting a file or database manager will be able to recover local data files at low cost. Isis was designed
to address the first sort of problem, but includes several tools for solving the latter one.

Generally, the approach taken is to represent key services using process groups, replicating service state
information so that even if one server process fails the other can respond to requests on its behalf. During
periods when n service programs are operational, one can often exploit the redundancy to improve response
time; thus, rather than asking how much such an application must pay for fault-tolerance, more appro-
priate questions concern the level of replication at which the ovediead begins to outweigh the benefits of
concurrency, and the minimum acceptable performance assuming k component failures. Fault-tolerance is
something of a side-effect of the replication approach.

A significant theme in financial computing is use of a subscription/publication style. The basic Isis

communication primitives do not spool messages for future replay, hence an application running over the
system, the NEWS facility, has been developed to support this functionality.

A final aspect of brokerage systems is that they require a dynamically varying collection of services. A
firm may work with dozens or hundreds of financial models, predicting market behavior for the financial
instruments being traded under varying market conditions. Only a small subset of these services will be
needed at any time. Thus, systems of this sort generally consist of a processor pool on which services
can be started as necessary, and this creates a need to support an automatic remote execution and load
balancing mechanism. The heterogeneity of typical networks complicates this problem, by introducing a
pattern matching aspect (i.e., certain programs may be subject to licensing restrictions, or require special
processors, or may simply have been compiled for some specific hardware configuration). This problem is
solved using the Isis network resource manager, an application described later in this section.

6.2 Database replication and database triggers

Although the Isis computation model differs from a transactional model (see also Sec. 7), IsIs is useful in
Constructing distributed database applications. In fact, as many as half of the applications with which we
are familiar are concerned with this problem.

Typical uses of Isis in database applications focus on replicating a database for fault-tolerance or to support
concurrent searches for improved performance. In such an architecture, the database system need not be

27



aware that Isis is present. Database clients access the database through a layer of software that multicasts

updates (using AHCAST) to the set of servers, while issuing queries directly to the least loaded server. The

servers ame supervised by a process group that informs clients of load changes in the server pool, and

supervises the restart of a failed server from a checkpoint and log of subsequent updates. It is interesting

to realize that even such an unsophisticated approach to database replication addresses a widely perceived

need among database users. In the long run, of course, comprehensive support for applications such as this

would require extending Isis to support a transactional execution model and to implement the XA/XOpen

standards.

Beyond database replication, Isis users have developed WAN databases by placing a local database system
on each LAN in a WAN system. By monitoring the update traffic on a LAN, updates of importance to
remote users can be intercepted and distributed through the Isis WAN architecture. On each LAN, a server

monitors for incoming updates and applies them to the database server as necessary. To avoid a costly
concurre:ncy control problem, developers of applications such as these normally partition the database so
that the data associated with each LAN is directly updated only from within that LAN. On remote LAN's,

such data can only be queried and could be stale, but this is still sufficient for many applications.

A final use of Isis in database settings is to implement database triggers. A trigger is a query that
is incrementally evaluated against the database as updates occur, causing some action immediately if a
specified condition becomes true. For example, a broker might request that an alarm to be sounded if
the risk associated with a financial position exceeds some threshold. As data enters the financial database

maintained by the brokerage, such a query would be evaluated repeatedly. The role of Isis is in providing

tools for reliably notifying applications when such a trigger becomes enabled, and for developing programs
capable of taking the desired actions despite failures.

6.3 Major Isis-based utilities

In the above subsection, we alluded to some of the fault-tolerant utilities that have been built over Isis.
There are currently five such systems:

e NEWS: This application supports a collection of communication topics to which users can subscribe

(obtaining a replay of recent postings) or post messages. Topics are identified with file-system style
names, and it is possible to post to topics on a remote network using a "mail address" notation;
thus, a Swiss brokerage firm might post some quotes to "/GENEVA/QUaFs[BM@NEW-YORK". The
application creates a process group for each topic, monitoring each such group to maintain a history
of messages posted to it for replay to new subscribers, using a state transfer when a new member

joins.

* NMGR: This program manages batch-style jobs and performs load sharing in a distributed setting.

This involves monitoring candidate machines, which are collected into a processor pool, and then

28



scheduling jobs on the pool. A pattern matching mechanism is used for job placement; if several

machines are suitable for a given job, a criteria based on load and available memory is used to select

one (this criteria can readily be changed). When employed to manage critical system services (as

opposed to running batch-style jobs), the program monitors each service and automatically restarts

failed components. Parallel make is an example of a distributed application program that uses

NMm for job placement: it compiles applications by farming out compilation subtasks to compatible

machines.

SDBcmr This system [SBM89] provides fault-tolerant NFS-compatible file storage. Files are repli-

cated both to increase performance (by supporting parallel reads on different replicas) and for fault-

] tolcranthe level of replication is varied depending on the style of access detected by the system at

nmtime. After a failed node recovers, any files it managed are automatically brought up to date. The

approach conceals file replication from the user, who sees an NES-compatible file-system interface.

* MErAIOMrrA: MErA is an extensive system for building fault-tolerant reactive control applica-

tions [MCWB91, Wbo9l]. It consists of a layer for instrumenting a distributed application or

enviYhment, by defining sensors and aciwors. A sensor is any typed value that can be polled or

monitored by the system; an actuator is any entity capable of taking an action on request. Built-in

sensors include the load on a machine, the status of software and hardware components of the system,

and the set of users on each machine. User-defined sensors and actuators extend this initial set.

The "raw" sensors and actuators of the lowest layer are mapped to abstract sensors by an intermediate

layer, which also supports a simple database-style interface and a triggering facility. This layer

supports an entity-relation data model and conceals many of the details of the physical sensors, such

as polling frequency and fault-tolerance. Sensors can be aggregated, for example by taking the

average load on the servers that manage a replicated database. The interface supports a simple trigger

language, which will initiate a pre-specified action when a specified condition is detected.

Running over MEFA is a distributed language for specifying control actions in high-level terms, called

LoMrrA. LoMrrA code is imbedded into the UNIX CSH command interpretor. At runtime, LOMITA

control statements are expanded into distributed finite state machines triggered by events that can

be sensed local to a sensor or system component; a process group is used to implement aggregates,

perform these state transition, and to notify applications when a monitored condition arises.

. SPOOLER/LONG-HAUL FACILITY: This subsystem is responsible for wide-area communication [MB90]

and for saving messages to groups that are only active periodically. It conceals link failures and

presents an exactly-once communication interface.

6.4 Other Isis applications

Although this section covered a variety of Isis applications, brevity precludes a systematic review of the full

range of software that has been developed over the system. In addition to the problems cited above, Isis has

29



been applied to telecommunications switching and "intelligent networking" applications, military systems,

such as a proposed replacement for the AEGIS aircraft tracking and combat engagement system, medical

systems, graphics and virtual reality applications, seismology, factory automation and production control,

reliable management and resource scheduling for shared computing facilities, and a wide-area weather

prediction and storm tracking system [Joh93. Tho90, ASC92]. Isis has also proved popular for scientific

computing at laboratories such as CERN and Los Alamos, and has been applied to such problems as a beam

focusing system for a particle accelerator, a weather-simulation that combines a highly parallel ocean model

with a vectorized atmospheric model and displays output on advanced graphics workstations, and resource
management software for shared supercomputing facilities.

It should also be noted that although the paper has focused on LAN issues, Isis also supports a WAN

architecture and has been used in WANs composed of up to ten LANs.II Many of the applications cited

above ame structured as LAN solutions interconnected by a reliable, but less responsive, WAN layer.

7 Isis and other distributed computing technologies

Our discussion has overlooked the sorts of real-time issues that arise in the Advanced Automation System,

a next-generation air-traffic control system being developed by IBM for the FAA [CD90, CASD85], which

also uses a process-group based computing modeL Similarly, one might wonder how the Isis execution

model compares with transactional database execution models. Unfortunately, these are complex issues,

and it would be difficult to do justice to them without a lengthy digression. Briefly, a technology like the

one used in AAS differs from Isis in providing strong real-time guarantees provided that timing assumptions

ae respected. However, a process that experiences a timing fault in the AAS model could receive messages

that other processes reject, or reject messages others accept, because the criteria for accepting or rejecting

a message uses the value of the local clock. This can lead to consistency violations. Moreover, if fault

is transient (e.g. the clock is subsequently resynchzrnized with other clocks), the inconsistency of such

a process could "spread:" nothing prevents it from initiating new multicasts, which other processes will

accept. Isis, on the other hand, guarantees that consistency will be maintained, but not that real-time delivery

deadlines will be achieved.

The relationship between ISis and transactional systems originates in the fact that both virtual synchrony

and transactional serializability are order-based execution models [BHG87]. However, where the "tools"

offered by a database system focus on isolation of concurrent transactions from one another, persistent

data and rollback (abort) mechanisms, those offered in Isis are concerned with direct cooperation between

members of groups, failure handling, and ensuring that a system can dynamically reconfigure itself to make

"Tiln WAN chitecmur of IsWs is similar to the LAN strcture, but because WAN partitions we more common, encourages a

more asWynIOnOUs programming style. WAN communiction sd link staem as logged to disk files (unlike LAN communicaton),

which enables WS to retnmmit messages lost when a WAN palrion occurs and to suppress duplicate messages. WAN issues are

discussed in mom detail in [MB90J.

30



forward progress when partial failures occur. Persistency of data is a big issue in database systems, but

much less so in Isis. For example, the commit problem is a form of reliable multicast, but a commit implies

serializability and permanence of the transaction being committed, while delivery of a multicast in Isis

provides much weaker guarantees.

8 Conclusions

We have argued that the next generation of distributed computing systems will benefit from support for

process groups and group programming. Arriving at an appropriate semantics for a process group mechanism

is a difficult problem, and implementing those semantics would exceed the abilities of many distributed

application developers. Either the operating system must implement these mechanisms or the reliability and

performance of group-structured applications is unlikely to be acceptable.

The Isis system provides tools for programming with process groups. A review of research on the system

leads us to the following conclusions:

"* Process groups should embody strong semantics for group membership, communication, and synchro-

nization. A simple and powerful model can be based on closely synchronized distributed execution,

but high performance requires a more asynchronous style of execution in which communication is

heavily pipelined. The virtua synchrony approach combines these benefits, using a closely syn-

chronous execution model, but deriving a substantial performance benefit when message ordering can

safely be relaxed.

"* Efficient protocols have been developed for supporting virtual synchrony.

"* Non-experts find the resulting system relatively easy to use.

This paper is being written as the first phase of the Isis effort approaches its conclusion. We feel that the initial

system has demonstrated the feasibility of a new style of distributed computing. As reported in [BSS91 1, Isis

achieves levels of performance comparable to those afforded by standard technologies (RPC and streams)

on the same platforms. Looking to the future, we are now developing an Isis "microkemel" suitable for

integration into next-generation operating systems such as Mach and Chorus. This new system will also

incorporate a security architecture [RBG921 and a real time communication suite. The programming model,

however, will be unchanged.

Process group programming could ignite a wave of advances in reliable distributed computing, and of

applications that operate on distributed platforms. Using current technologies, it is impractical for typical

developers to implement high reliability software, self-managing distributed systems, to employ replicated

data or simple coarse-grained parallelism, or to develop software that reconfigur'-s automatically after a

31



failure or recovery. Consequently, although current networks embody tremendously powerful computing

resources, the programmers who develop software for these environments are severely constrained by a

deficient software infrastructure. By removing thee annecessary obstacles, a vast groundswell of reliable

distributed application development can be unleashed.

9 Acknowledgements

The Isis effort would not have been possible without extensive contributions by many past and present

members of the project, users of the system, and researchers in the field of distributed computing. Thanks

are due to: Micah Beck, T1m Clark, Robert Cooper, Brad Glade, Barry Gleeson, Holger Herzog, Guerney
Hunt, Tbmmy Joseph, Ken Kane, Jacob Levy, Messac Makpangou, Keith Manzulo, Mike Reiter, Aleta

Ricciardi, Fred Schneider, Andre Schiper, Frank Schmuck, Stefan Sharkansky, Alex Siegel, Pat Stephenson,

Robbert van Renesse, and Mark Wood. In addition, the author also gratefully acknowledges the help of

Mauren Robinson, who prepared the figures for this paper, and the anonymous referees, whose careful

and constructive comments on an initial version of this paper lead to a substantial improvements in the

presentation.

32



References

[ABHN91] Mustaque Ahamad, James Burns, Phillip Hutto, and Gil Neiger. Causal memory. Technical

report, College of Computing, Georgia Institute of Technology, Atlanta, GA. July 1991.

[ADKM91] Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki. Transis: A communication

subsystem for high availability. Technical Report TR 91-13, Computer Science Department,

The Hebrew University of Jerusalem, November 1991.

[ASC92] T. Anthony Allen, William Sheppard, and Steve Condon. Imis: A distributed query and report

formatting system. In Proceedings of the SUN Users Group Meeting, pages 94-101. Sun

Microsystems Inc., 1992.

[BC9g0 Ken Binnan and Robert Cooper. The ISIS project: Real experience with a fault tolerant

programming system. European SIGOPS Workshop, September 1990. To appear in Oper-
ating Systems Review, April 1991; also available as Cornell University Computer Science
Department Technical Report TR90-1138.

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and

Recovery in Database Systems. Addison-Wesley, 1987.

[Bir85] Kenneth P. Binman. Replication and availability in the ISIS system. In Proceedings of the Tenth
ACM Symposium on Operating Systems Principles, pages 79-86, Orcas Island, Washington,

December 1985. ACM SIGOPS.

[BJ87] Kenneth P. Birman and Thomas A. Joseph. Exploiting virtual synchrony in distributed systems.

In Proceedings of the Eleventh ACM Symposium on Operating Systems Principles, pages 123-
138, Austin, Texas, November 1987. ACM SIGOPS.

[BJ89] Ken Birman and Tommy Joseph. Exploiting replication in distributed systems. In Sape Mul-
lender, editor, Distributed Systems, pages 319-368, New York, 1989. ACM Press, Addison-

Wesley.

[BSSg91 Kenneth Birnan, Andre Schiper, and Patrick Stephenson. Lightweight causal and atomic
group multicast. ACM Transactions on Computer Systems, 9(3), August 1991.

[CASD85] Flaviu Cristian, Houtan Aghili, H. Ray Strong, and Danny Dolev. Atomic broadcast: From
simple message diffusion to Byzantine agreement. In Proceedings of the Fifteenth International
Symposium on Fault-Tolerant Computing, pages 200-206, Ann Arbor, Michigan, June 1985.

Institution of Electrical and Electronic Engineers. A revised version appears as IBM Technical
Report RJ5244.

[CD90] Flaviu Cristian and Robert Dancey. Fault-tolerance in the advanced automation system.
Technical Report RJ7424, IBM Research Laboratory, San Jose, California, April 1990.

33



[Cri88] Flaviu Cristian. Reaching agreement on processor group membership in synchronous distrib-

uted systems. Technical Report RJ5964, IBM Research Laboratory, March 1988.

[CZ831 David Cheriton and Willy Zwaencpoel. The distributed V kernel and its performance for

diskless workstations. In Proceedings of the Ninth ACM Symposium on Operating Systems

Principles, pages 129-140, Bretton Woods, New Hampshire, October 1983. ACM SIGOPS.

[DSB86] M. Dubois, C. Scheurich, and E Briggs. Memory access buffering in multiprocessors. In

Proceedings of the 13th Annual International Symposium on Computer Architecture, pages

434-442, June 1986.

[JB89] Thomas Joseph and Kenneth Birman. Low cost management of replicated data in fault-tolerant

distributed systems. ACM Transactions on Computer Systems, 4(l):54-70, February 1989.

[Joh93] Dag Johansen. Stormcast: Yet another exercise in distributed computing. In Dag Johansen and

Frances Brazier, editom, Distributed Open Systems in Perspective. 'EEE, New York, 1993.

[KTHB89] M. Frans Kaashock, Andrew S. Tanenbaum, Susan Flynn Hummel, and Henri E. Bal. An

efficient reliable broadcast protocoL Operating Systems Review, 23(4):5-19, October 1989.

[Lam78] Leslie Lamport. Thne, docks, and the ordering of events in a distributed system. Communi-

cations of the ACM, 21(7):558-565, July 1978.

[LL86] Barbara Liskov and Rivka Ladin. Highly-available distributed services and fault-tolerant

distributed garbage collection. In Proceedings of the Fifth ACM Symposium on Principles of

Distributed Computing, pages 29-39, Calgary, Alberta, August 1986. ACM SIGOPS-SIGACT.

[LLS90] Rivka Ladin, Barbara Liskov, and Liuba Shrira. Lazy replication: Exploting the semantics of

distributed services. In Proceedings of the Tenth ACM Symposium on Principles of Distributed

Computing, pages 43-58, Qeubec City, Quebec, August 1990. ACM SIGOPS-SIGACT.

[MBg9] Messac Makpangou and Kenneth Birman. Designing application software in wide area network

settings. Technical Report 90-1165, Department of Computer Science, Cornell University,

1990.

[MCWB91] Keith Manullo, Robert Cooper, Mark Wood, and Kenneth Birman. Tools for distributed

application management. IEEE Computer, August 1991.

(PBS89] Larry L Peterson, Nick C. Bucholz, and Richard Schlichting. Preserving and using con-

text information in interprocess communication. ACM Transactions on Computer Systems,

7(3):217-246, August 1989.

[Pet87] Larry Peterson. Preserving context information in an ipc abstraction. In Sixth Symposium on

Reliability in Distributed Software and Database Systems, pages 22-31. IEEE, March 1987.

34



[RAA+88] M. Rozier, V. Abrossimov, M. Armand, F. Hermann, C. Kaiser, S. Langlois, P. Leonard, and
W. Neuhauser. The chorus distributed system. Computer Systems, pages 299-328, Fall 1988.

[RB91] Aleta Ricciardi and Kenneth Birman. Using process groups to implement failure detection in

asynchronous environments. In Proceedings of the Eleveth ACM Symposium on Principles

of Distributed Computing, Montreal, Quebec, August 1991. ACM SIGOPS-SIGACr.

[RB092] Michael Reiter, Kenneth P. Birman. and Li Gong. Integrating security in a group oriented

distributed system. In Proceedings of the IEEE Symposium on Research in Security and
Privacy, pages 18-32, May 1992.

[SBM89] Alex Siegel, Kenneth Binnan, and Keith Marzullo. Deceit A flexible distributed file system.

Technical Report 89-1042, Depautment of Computer Science, Cornell University, 1989.

[Sch88] Frank Schmuck. The Use of Efficient Broadcast Primitives in Asynchronous Distributed

System.s PhD thesis, Cornell University, 1988.

[Sch90] Fred B. Schneidez Implementing fault-tolerant services using the state machine approach: A

tutorial ACM Computing Surveys, 22(4):299-319, December 1990.

[SS83] Richard D. Schlicxting and Fred B. Schneider. Fail-stop processors: an approach to designing

fault-tolerant .omputing systems. ACM Transactions on Computer Systems, 1(3):222-238,

August 1983.

[Tan88] Andrew Tanenbaum. Computer Networks. Prentice Hall, second edition, 1988.

[TH90M Josep Torrellas and John Hennessey. Estimating the performance advantages of relaxing
consistency in a shared memory multiprocessor. Technical Report CSL-TN-90-365, Computer

Systems Laboratory, Stanford University, February 1990.

UTho9O] Thomas C. Bache et. al. The intelligent monitoring system. Bulletin of the Seismological
Society of America, 80(6):59-77, December 1990.

(TS921 John Turek and Dennis Shasha. The many faces of Consensus in distributed systems. IEEE

Computer, 25(6):8-17, 1992.

[Woo9l] Mark Wood. Constructing reliable reactive systems. PhD thesis, Cornell University, Depart-
ment of Computer Science, December 1991.

35


